Tight Nordhaus–Gaddum-Type Upper Bound for Total-Rainbow Connection Number of Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polynomial algorithm for sharp upper bound of rainbow connection number of maximal outerplanar graphs

For a finite simple edge-colored connected graph G (the coloring may not be proper), a rainbow path in G is a path without two edges colored the same; G is rainbow connected if for any two vertices of G, there is a rainbow path connecting them. Rainbow connection number, rc(G), of G is the minimum number of colors needed to color its edges such that G is rainbow connected. Chakraborty et al. (2...

متن کامل

A tight upper bound on the (2, 1)-total labeling number of outerplanar graphs

A (2, 1)-total labeling of a graph G is an assignment f from the vertex set V(G) and the edge set E(G) to the set {0, 1, . . . , k} of nonnegative integers such that | f (x) − f (y)| ≥ 2 if x is a vertex and y is an edge incident to x, and | f (x) − f (y)| ≥ 1 if x and y are a pair of adjacent vertices or a pair of adjacent edges, for all x and y in V(G) ∪ E(G). The (2, 1)-total labeling number...

متن کامل

Rainbow connection number of dense graphs

An edge-colored graph G is rainbow connected, if any two vertices are connected by a path whose edges have distinct colors. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. In this paper we show that rc(G) ≤ 3 if |E(G)| ≥ ( n−2 2 ) + 2, and rc(G) ≤ 4 if |E(G)| ≥ ( n−3 2 ) + 3. These bounds...

متن کامل

Total rainbow k-connection in graphs

Let k be a positive integer and G be a k-connected graph. In 2009, Chartrand, Johns, McKeon, and Zhang introduced the rainbow k-connection number rck(G) of G. An edge-coloured path is rainbow if its edges have distinct colours. Then, rck(G) is the minimum number of colours required to colour the edges of G so that any two vertices of G are connected by k internally vertex-disjoint rainbow paths...

متن کامل

Graphs with rainbow connection number two

An edge-coloured graph G is rainbow connected if any two vertices are connected by a path whose edges have distinct colours. The rainbow connection number of a connected graph G, denoted rc(G), is the smallest number of colours that are needed in order to make G rainbow connected. In this paper we prove that rc(G) = 2 for every connected graph G of order n and size m, where (

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in Mathematics

سال: 2017

ISSN: 1422-6383,1420-9012

DOI: 10.1007/s00025-017-0753-x